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1. Introduction 
 
More than a million 23andMe customers have consented to participate in research. Their 
contributions not only have led to more than 60 scientific publications but have also allowed our 
scientists to develop unique and innovative products for the 23andMe® Personal Genetic 
Service. We previously published a white paper describing our general approach in creating 
predictive models for categorical traits with a limited number of discrete outcomes such as hair 
color and cheek dimples1. Here, we extend this approach to model body mass index (BMI), a 
quantitative trait with a continuous numeric outcome, and detail appropriate metrics for the 
validation of models predicting quantitative outcomes. We also extend these methods of model 
creation to non-European populations. The genetic models described in this study use more 
than 300 single nucleotide polymorphisms (SNPs) to predict BMI based on data from more than 
600,000 research participants. The out of sample variance in BMI explained by the purely 
genetic models ranged from 1.8% to 4.3%, depending on the ethnicity of the cohort. Finally, we 
present our analysis of the interaction between the BMI genetic risk scores and various lifestyle 
phenotypes. These sets of information are translated for use in the 23andMe Genetic Weight 
report. 
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The predictive models for BMI and gene-by-environment interactions presented in this white 
paper form the basis for 23andMe's Genetic Weight report. Because research on weight-related 
phenotypes and factors influencing weight is ongoing, the technical basis for and information 
provided in the report may change over time. We will update this white paper as appropriate to 
reflect any substantive changes to the technical basis underlying the report. 

 

2. Methods 
 
Genotyping 
Genotyping for this study was performed as described previously2. Briefly, DNA was extracted 
from saliva samples and genotyped by the National Genetics Institute (NGI), a Clinical 
Laboratory Improvement Amendments (CLIA)-certified clinical laboratory and subsidiary of the 
Laboratory Corporation of America on one of the two Illumina BeadChip platforms. These 
platforms were either the Illumina HumanHap550+ BeadChip platform (standard 
HumanHap550 panel augmented with a custom set of ∼25,000 SNPs), or the Illumina 
HumanOmniExpress+ BeadChip (a platform with a base set of 730,000 SNPs augmented with 
∼250,000 SNPs to obtain a superset of HumanHap550+ content as well as a custom set of 
∼30,000 SNPs). Samples must meet a quality-control requirement of a 98.5% chip-wide call 
rate. 
 
Phenotyping 
All 23andMe customers provide their age as part of registering their sample. Sex is determined 
based on customer genotype. We collected additional phenotypes by inviting 23andMe research 
participants to answer surveys. Research participants are asked for their height and weight as 
well as numerous lifestyle-related phenotypes in multiple surveys and questions within the 
23andMe research experience. For height and weight, the most recent survey answers for each 
individual are used to calculate the observed BMI. Participants with BMIs below 14 or above 70, 
or with ages below 18 are excluded. Descriptions of other phenotypes used in the report can be 
found in Supplementary Table 1. 

Model definitions 

Multiple linear regression models predicting BMI are used in this study. These models and their 
uses are discussed in detail in the appropriate sections of this report. For clarity, the models, 
their training cohorts and their formulae are presented here (Table 1). 
 
Table 1: Model training cohorts and definitions 

Name Training 
Cohort 

Linear regression model formula Equation 

GRS Ancestry- 
specific 

 

Equation 1 
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Population 
Stratification 

Ancestry- 
specific 

 

Equation 2 

Main result Ancestry- 
and sex- 
specific 

 
Equation 3 

Phenotype 
GxE 
(discovery) 

European  Equation 4 

Phenotype 
GxE 
(prediction) 

European 

 

Equation 5 

 

Defining genetic risk scores for BMI 

We previously developed a computational pipeline for building genetic risk scores (GRS) for 
binary and ordinal phenotypes1. At a high level, this pipeline consists of the discovery of 
phenotype-associated SNPs via GWAS in a training cohort, the combination of the SNPs through 
linear regression into a risk score, and the validation of the risk score in a separate testing 
cohort. Our approach in this study uses the same overall pipeline but differs in the use of a 
quantitative outcome and model creation for non-European populations. 
 
Training cohorts were split randomly into training and testing cohorts. The European training 
cohort was split 80%: 20% training and testing, respectively, and the non-European ancestry 
cohorts were split randomly 50%: 50% into training and testing cohorts, respectively, in order to 
ensure testing cohort numbers sufficient for model evaluation (Table 2). The non-European 
models were developed with data from Latino, African-American, East Asian and South Asian 
(as determined by genetics3) research participants for whom we have reported height and 
weight. These five ancestries were selected because they are the most common among 23andMe 
research participants. Related individuals, 1st cousins and closer, were excluded from analyses. 
 
To identify SNPs that are predictive of BMI, we ran a genome-wide association study (GWAS) 
analysis in the European training set, controlling for age, sex, genotyping chip platform and the 
top five genetic principal components. After performing the GWAS and conducting standard 
quality control, we applied a feature selection step in which we identified “tag” SNPs from 
associated genomic regions. Associated regions were defined by selecting all SNPs within a 
500kb window containing at least 1 SNP with p-value < 5e-6 and then by combining overlapping 
windows. Tag SNPs within each region were identified by taking the SNP with smallest p-value. 
The tag SNPs with p-values <= 5e-8 serve as our SNP predictors.  
 
Given the final sets of n  SNP predictors, we fit linear regression models to predict BMI 
(Equation 1). We then define the GRS as the weighted sum of n  SNP allele counts where the 
weights are the realized regression coefficients from the fitted linear model: 
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Equation 6 

 
For individuals with missing genotypes (no-calls) we replace missing SNP allelic dosages with 
the population mean allelic dosage for that SNP. 
 
Model evaluation and calibration 
We evaluate the out-of-sample performance of linear models that predict BMI (both GRS-only 
models as well as models that incorporate both GRS and other phenotypes) by examining the 
correlation between predicted and actual BMI in out-of-sample testing cohorts. Correlation 
coefficients are calculated by generating GRS for participants in the testing cohorts and 
comparing these to their actual BMI. P-values for the correlation coefficients were determined 
by calculating test statistics with the following equation: 

 

and applying the test statistics to a t-distribution with df = n-2. 
 
To ensure that the observed correlation between GRS and BMI was not simply due to population 
substructure and sampling stratification, a linear regression was performed between BMI and 
GRS using age, sex, and the first five genetic principal components as covariables (Equation 2). 
 
One of the main performance measures for the evaluation of predictive models is calibration, 
referring to the agreement or discordance between predictions and observed outcomes. Metrics 
examining calibration can reveal systematic biases in predictions and overfitting4. We examine 
calibration in this study as previously described1. Briefly, all research participants in the training 
cohorts are ranked by GRS and then split into 20 equally sized bins. Participants in the testing 
cohort are binned using the score thresholds of each bin in the training cohort. For each bin we 
calculated mean BMI in both the testing and training cohorts and compared the distribution of 
these mean BMIs between cohorts to assess calibration. Two-sample Kolmogorov-Smirnov tests 
were used to assess differences in the empirical distribution functions for the mean BMIs in the 
testing and training cohorts, where under the null hypothesis the two samples have the same 
underlying probability distribution. P-values for the Kolmogorov-Smirnov test were determined 
using the Scipy python library.5 

 

Phenome-Wide Association Study 
In the 23andMe research database, over 1,600 phenotypes derived from research participant 
survey responses are under active investigation by 23andMe scientists. We used regression to 
evaluate association between each of these 1,600 phenotypes and BMI. For binary phenotypes 
such as whether participants exercised regularly or were vegetarians, we used logistic regression 
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to estimate the effect of BMI after adjusting for age, sex, chip platform and the top five genetic 
principal components. For continuous phenotypes we used linear regression with the same 
covariates. 

 

3. Results 

Cohort characteristics 

We trained and tested sex-specific BMI GRS models for European, Latino, African-American, 
East Asian, and South Asian ancestry groups with a total of more than 650,000 research 
participants (Table 2). Median age and BMI were consistent between training and testing 
cohorts for each population. 
 
Table 2: Cohort Statistics 

Ancestry Cohort Total 
Size 

Females / 
Males 

Median 
Age 

Median 
BMI 

European Training 428342 210711 / 
217631 

52 25.73 

Testing 107091 52385 / 
54706 

52 25.75 

Latino Training 32540 16575 / 
15965 

41 25.79 

Testing 32541 16405 / 
16136 

41 25.85 

African-American  Training 15103 8128 / 6975 45 27.49 

Testing 15103 8157 / 6946 45 27.49 

East Asian  Training 12380 6755 / 5625 36 22.65 

Testing 12381 6808 / 5573 37 22.65 

South Asian  Training 4043 1334 / 2709 37 24.26 

Testing 4044 1322 / 2722 38 24.27 

 

Genetic risk score and main result model evaluation 

Each GRS was evaluated in the corresponding sex-specific testing cohort. The overall 
performance of the models were assessed with coefficients of determination (R2) and 
corresponding p-values from the application of the models to the testing cohorts (Table 3). 
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Genetic risk scores provide an indication of an individual's purely genetic predisposition for a 
trait. This is valuable information, but BMI itself can be predicted more accurately if additional 
phenotypes are used. To accurately predict the BMI of individual customers in the main result of 
the Genetic Weight report, we used a linear regression framework that incorporated age and 
used sex- and ancestry-specific training cohorts (the same cohorts used to train the GRS, except 
split by sex). Due to nonlinearity between BMI and age, we also included a quadratic age term 
(Equation 3). As this model is used for the main result of the Genetic Weight report, here we call 
this model the "main result" model. 
 
We explored three methods of applying these BMI prediction models to non-European 
populations. 1) Using the European GRS, fitting the main result model in Europeans, and then 
applying the results to non-Europeans; 2) using the European GRS, fitting the main result 
model in the appropriate non-European population and applying the results to non-Europeans; 
and 3) using the non-European GRS, fitting the main result model in the appropriate 
non-European population and applying the results to non-Europeans. For nearly all cases, we 
found that option 2, essentially a form of calibrating the European GRS, performed equivalently 
or better than the other two options in terms of raw performance (R2, Supplementary Table 1) 
and had the least biased results (Supplementary Figure 1). We therefore used this calibration 
method to generate BMI predictions for non-European customers. We hypothesize that the 
re-calibration method has higher performance due to using the European GRS being trained in a 
much larger training cohort and has less bias due to the calibration being able to correct for the 
biases resulting from applying this GRS to non-European populations. 
 
Fitting these models allows the Genetic Weight report to include BMI predictions specific to 
each customer's age, sex, and ancestry (Table 3). The BMI can be translated to weight if the 
customer's height is known. Each population- and sex-specific GRS explains a statistically 
significant, though small, amount of variance in BMI. Performance is highest for the European 
and Latino GRS. 
 
Table 3: Coefficients of Determination for GRS and main result models 

Ancestry R2 

GRS GRS + Age + Age2 

(Main result model) 

Male Female Male Female 

European 0.0406 0.0434 0.0862 0.0702 

Latino 0.0387 0.0362 0.0930 0.0646 

African- 
American 

0.0191 0.0253 0.0810 0.0552 
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East Asian 0.0262 0.0188 0.0518 0.0390 

South 
Asian 

0.0265 0.0374 0.0541 0.0618 

R 2  = Coefficients of determination in testing cohorts. 
 
To account for the possibility that the GRS may merely reflect confounding between population 
substructure and BMI, we examined the significance of the GRS coefficient in a linear regression 
model that incorporated the first five genetic principal components (Equation 3). The GRS 
coefficients were significant for all GRS (data not shown), showing that the GRS were associated 
with BMI independently of population substructure. To probe the models for potential 
systematic bias, we examined calibration plots and performed Kolmogorov-Smirnov tests for 
differences in the distributions of score quantiles between the training and testing populations 
(Figure 1). The GRS appear to be adequately calibrated as measured by the 
Kolmogorov-Smirnov test (Figure 1). Finally, we also created and examined GRS histograms. 
The GRS histograms for each GRS exhibit expected normal distributions (Supplementary Figure 
2). 
 
Figure 1: Model Calibration Plots 

Ancestry Males Females 

European 
 
 

 
R2 = 0.985, KS p-value = 1.00 

 
R2 = 0.986, KS p-value = 1.00 
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Latino 

 
R2 = 0.937, KS p-value = 1.00 R2 = 0.952, KS p-value = 1.00 

African- 
American 

 
R2 = 0.766, KS p-value = 1.00 R2 = 0.763, KS p-value = 0.77 

East Asian 

 
R2 = 0.675, KS p-value = 0.96 

 

 
R2 = 0.767, KS p-value = 0.49 
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South Asian 

R2 = 0.728, KS p-value = 1.00 R2 = 0.556, KS p-value =0.77 

GRS in the training and testing cohorts are sorted and then split into 20 bins with equal 
numbers of individuals. Each dot represents a bin. The Y-axis represents the mean BMI of each 
bin in the testing cohort and the X-axis represents the mean BMI of each bin in the training 
cohort. 
R 2  = Coefficient of determination for the correlation between predicted and actual BMI values 
in the testing cohort for 20 GRS quantiles.  
KS p-value = The p-value for a two-sample Kolmogorov-Smirnov test, under the null 
hypothesis that the predicted and actual BMI quantile values came from the same distribution.  
 
Assessment of no-call rate on model performance 
Occasionally, it may not be possible to determine genotype at a particular locus, often due to low 
probe intensity. In order to determine whether these no-called loci affected model performance, 
we first characterized the distribution of the number of no-calls in the European training cohort. 
More than 95% of individuals had fewer than five no-calls. We then evaluated the correlation 
between GRS and BMI among individuals who had a given number of no-calls (Figure 2). We 
saw no systematic decline in correlation coefficient as the number of no-calls increased, 
suggesting that no-call numbers biologically present in the training cohort appear to be too 
small to degrade model performance. 
 
Figure 2: No-call count and GRS performance 
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A   B  

A: The number of participants (Y-axis, log scale) with specific numbers of no-calls (X-axis) at 
the loci used in the BMI GRS in the European training cohort. B: The coefficient of 
determination (r 2 , Y-axis, dark line) for the correlation between BMI and GRS calculated in 
participants within the European training cohort with specific numbers of no-calls (X-axis). 
Upper and lower 95% confidence intervals derived from bootstrapping are represented by 
pale regions around the darker line. 
 
 
4. Applying the GRS to 23andMe's Genetic Weight report: translating a BMI 

prediction into a predisposition 
The Genetic Weight report is personalized to each 23andMe customer based on their genotype, 
sex, age, and self-identified primary ancestry, all of which are either computed directly from 
his/her genetic data or obtained via survey prior to the customer viewing his/her report.  
 
The primary result of the report tells customers how different from average, as a percentage, 
their BMI is predicted to be due to their genetics. To generate this result, each customer's GRS is 
calculated as described above. The customer's BMI is then predicted using the corresponding 
main result model. These BMI predictions are divided by the BMI predicted for an age-matched 
theoretical customer with the median GRS from the training cohort for the ancestry with which 
the customer self-identifies.  

 

 
This produces a percentage indicating the deviation from median weight associated with the 
customer's genetics (Figure 2A). The distribution of these results in the European training 
cohorts is shown in Figure 2B and C; about 30% of participants have a predicted weight that is 
about average for their height, ancestry, age, and sex (within 3% of median), 60% have a 
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predicted weight between 3-6% more or less than average, and 10% of participants have a 
predicted weight more than 6% more or less than average, based on their genetics. Customers 
with results between 3% and -3% will be told that their results are about average. 
 
Customers are also told how many genetic variants they have that contribute to higher and lower 
weights (Figure 2D). Each SNP used to calculate the GRS is associated with a weight and an 
effect allele. To calculate the number of variants each customer has that contribute to higher 
weight, for each customer the total number of effect alleles associated with positive weights are 
added to the total number of non-effect alleles associated with negative weights. The number of 
variants that contribute to negative weight are calculated using the opposite weights. No-called 
loci contribute no variants to either the positive or negative variant counts; however, they are 
replaced with the mean allelic dosage as described earlier for the purposes of calculating the 
GRS. 
 
Figure 2: Genetic Weight report results and result distributions 

A

 

B 
Female result distribution 

 

C 
Male result distribution 
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D 

 

Figure 2A: Example of the main result of the Genetic Weight report. Figure 2B and C: 
distribution of primary results in female (A) and male (B) Europeans. X-axis - primary result. 
Y-axis - density. Figure 2D: example of the variant count result in the Genetic Weight report. 
 

Gene-by-environment effects on BMI 

We performed a PheWAS in the European cohort to identify phenotypes associated with BMI 
with p-values < 0.05 after Bonferroni correction for multiple testing (results for selected 
phenotypes in Supplementary Table 3). We did not perform PheWAS in non-European cohorts 
due to insufficient sample sizes.  
 
To identify phenotypes where the relationship with BMI was also dependent on customer's 
genetics, we performed linear regression on each phenotype (Equation 4). Only those 
phenotypes with a significant GxE term (𝛽 2 ) were retained (results for selected phenotypes in 
Supplementary Table 3). For these phenotypes, the association between BMI and the phenotype 
was dependent on the GRS. These phenotypes were then manually filtered for relevance and 
suitability in a customer-facing report focused on weight and healthy lifestyle. The final selected 
phenotypes can be found in Supplementary Table 2.  

Maximum BMI differences associated with lifestyle phenotypes 

The "Healthy Habits For Your Genetics" section of the Genetic Weight report describes the 
maximum percentage difference in BMI associated with each lifestyle phenotype based on GRS. 
To generate these percentages for each phenotype, we predicted BMI using genetic and 
phenotypic information by performing linear regression. To limit the number of possible results, 
we trained these models on the GRS calibration bin each participant was sorted into (see section 
Genetic Risk Score Evaluation) instead of the raw GRS. We also included a quadratic phenotype 
term as several phenotypes were observed to have a non-linear association with BMI (Equation 
6). Several examples of these predictions, as well as their relationship with actual BMI 
distributions at various phenotype levels, can be found in Figures 3A, B and C. 
 
To return results to customers, for each phenotype i  and genetic risk bin j  we determined the 
maximum and minimum BMIs predicted over the range of phenotype levels for each GRS bin. 
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These were changed into a percentage in order to produce a number representing the % change 
in BMI associated with the difference between the most- and least- beneficial phenotype levels 
(Equation 7). For each phenotype, 20 such numbers were produced, one for each GRS quantile, 
in order to return results specific to the customer's GRS. 
 

 
Equation 7 

 
 
 
The "Healthy Habits" section of the report also describes the mean phenotype level exhibited by 
individuals in the same GRS bin whose BMIs are in the healthy range for each phenotype (BMI 
between 18.5 and 25, as defined by CDC guidelines6). These means were determined for all 
customers in the European training cohort in each GRS bin used for calibration. These average 
phenotype levels are unitless numbers corresponding to values used to encode the answers for 
the questions asked of 23andMe research participants. For example, the phenotype 
"red_meat_servings" corresponded to the question "During a typical week, how often do you eat 
red meat?" For this phenotype, phenotype level zero corresponded to the answer option "I don't 
eat red meat", while level 1 corresponded to "Once or twice a week", and level 5 corresponded to 
"Several times a day." The resulting means correspond to internal 23andMe phenotype level 
designations, which are individually translated for the Genetic Weight report. An example of 
how these results will be shown to customers can be found in Figure 3D. 
 
Figure 3: Selected gene-by-environment interactions 

A 
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B  
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C  

D 

 

Figures 3A-C: BMI predicted with phenotype models at different phenotype levels (dotted 
lines) and actual BMI of respondents for the same phenotype levels (boxplots) for the highest 
GRS bin (red) and lowest GRS bin (blue). Figure 3D: example of how a BMI-phenotype 
association is presented in the Genetic Weight report. 
 
 
5. Discussion 

 

Here we have described the methodology and validation of a BMI genetic risk score and its 
application to a 23andMe report providing customers with information about their genetic 
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weight predisposition. In this report, we also provide customers with information about diet and 
lifestyle phenotypes associated with their genetic score and use these associations to suggest 
healthy lifestyle choices. Additionally, while previously developed 23andMe genetic risk score 
reports describe qualitative (binary and ordinal) traits, here we extend our predictive model 
approach to also encompass risk scores associated with quantitative traits. 
 
This is also the first 23andMe risk score report in which we provide results specifically tailored 
for non-European populations. While we do not yet have the sample sizes to perform GWASes in 
non-European populations, here we successfully used the genetic loci identified in a European 
GWAS to train GRS in non-European cohorts that perform comparably or better than the 
European GRS in those cohorts. 
 
We chose to use the BMI GRS in the Genetic Weight report to describe customers' weight 
predispositions to weigh more or less than average rather than to predict BMI directly. This is 
because only a small proportion of variance is explained by the GRS (R2 = 0.040 and 0.043 in 
the male and female European testing cohorts, respectively), and such specific predictions 
would nearly always be inaccurate. This low R2 is likely due to a combination of the relatively 
strong environmental component of BMI combined with the missing genetic heritability that has 
yet to be discovered. Previously developed BMI GRS have had R2s between 0.01 and 0.027. Our 
BMI GRS appears to be able to predict average changes in BMI at a population level quite well, 
as shown by the high degree of calibration.  
 
As methodologies improve and the 23andMe research database grows, we hope to provide more 
and better information to 23andMe customers about the influence of their genetics on their 
weight and other phenotypes. 
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Supplementary Figures and Tables 
 
Supplementary Figure 1: Bias in non-European BMI prediction models 

Ancestry European model Calibrated model Trained model 

African American 

   

South Asian 

   

Plots of residuals (predicted BMI - real BMI, Y-axis) per predicted BMI quantile (X-axis) for 
selected ethnicities. Dotted line represents no residuals, red line represents a linear fit for the 
residuals of the plotted quantile bins. Shaded red area represents a 95% confidence interval for 
the linear fit. 
 
Supplementary Figure 2: GRS Histograms 

Ancestry Males Females 

European 
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Latino 

 

African- 
American 

East Asian 
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South 
Asian 

 

Histograms of GRS in both the training and testing cohorts for each population in this study. 
X-axis = GRS, Y-axis = density. Red histograms are created from the training cohort, while 
blue histograms are created from the testing cohort. 
 
Supplementary Table 1: Non-european BMI prediction model performance 

Ancestry Sex Model Type R2 

African American Male European 0.0756 

Calibrated 0.081 

Trained 0.717 

Female European 0.0563 

Calibrated 0.0552 

Trained 0.506 

Latino Male European 0.0907 

Calibrated 0.093 

Trained 0.0925 

Female European 0.065 

Calibrated 0.0646 

Trained 0.0643 

East Asian Male European 0.0452 

Calibrated 0.0518 
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Trained 0.0478 

Female European 0.0336 

Calibrated 0.049 

Trained 0.0309 

South Asian Male European 0.0499 

Calibrated 0.0541 

Trained 0.0282 

Female European 0.0736 

Calibrated 0.0618 

Trained 0.0262 

This table summarizes the R 2  for three types of models for each sex/ancestry combination 
examined in this report. All models in this table are predicting BMI using GRS, age and age 2  as 
predictors. European model type: BMI predicted in the non-european testing cohort with a 
BMI prediction model that uses the European GRS and was trained in the European training 
cohort. Calibrated model type: BMI predicted in the non-European testing cohort with a BMI 
prediction model that uses the European GRS and was trained in the non-European training 
cohort. Trained model type: BMI predicted in the non-European testing cohort with a BMI 
prediction model that uses the appropriate non-European GRS and was trained in the 
non-European cohort. 
 
Supplementary Table 2: Phenotype question definitions 

Phenotype Question Possible Answers 

Exercise frequency In a typical week, how often 
do you exercise? 

-Less than once a week 
-1-2 times per week 
-3-4 times per week 
-5-6 times per week 
-7 or more times per week 
-I'm not sure 

Fast food frequency In a typical week, how often 
do you eat fast food? 

-Not at all 
-Once or twice per week 
-Three to four times per week 
-Five to six times per week 
-Daily or almost daily 
-Several times a day 
-I'm not sure 
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Red meat frequency During a typical week, how 
often do you eat red meat? 

-I don't eat red meat 
-Less than once a week 
-1-2 times per week 
-3-4 times per week 
-5-6 times per week 
-More than 6 times per week 
-I'm not sure 

Vegetable frequency On a typical day, how many 
servings of fresh or cooked 
vegetables do you eat? One 
serving equals about half a 
cup. 

-Not at all 
-1-2 
-3-4 
-5-6 
-7 or more 
-I'm not sure 

Leafy green frequency In a typical week, how often 
do you eat leafy green 
vegetables, such as lettuce, 
spinach, or kale? 

-Not at all 
-Once or twice per week 
-Three to four times per week 
-Five to six times per week 
-Daily or almost daily 
-Several times a day 
-I'm not sure 

Stress level On a scale of 1 to 6, how 
would you rate your ability to 
handle stress in the past four 
weeks? 

-1 ("I can shake off stress") 
-2 
-3 
-4 
-5 
-6 ("Stress eats away at me") 

Sleep length How many hours of sleep do 
you get on a typical night? 

-Less than 4 
-4 - 5 
-6 - 7 
-8 - 9 
-10 -11 
-More than 11 
-I'm not sure 

Fish frequency In a typical week, how often 
do you eat fish or shellfish? 

-Not at all 
-Once or twice per week 
-Three to four times per week 
-Five to six times per week 
-Daily or almost daily 
-Several times a day 
-I'm not sure 

Fruit frequency On a typical day, how many Not at all 
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servings of fresh or cooked 
fruit (excluding fruit juice) do 
you eat? One serving equals 
about half a cup. 

-1-2 
-3-4 
-5-6 
-7 or more 
-I'm not sure 

Yogurt frequency In a typical week, how often 
do you eat yogurt? 

-Not at all 
-Once or twice per week 
-Three to four times per week 
-Five to six times per week 
-Daily or almost daily 
-Several times a day 
-I'm not sure 

Fruit juice frequency In a typical week, how often 
do you drink fruit juice, such 
as apple or orange juice? 

-Not at all 
-Once or twice per week 
-Three to four times per week 
-Five to six times per week 
-Daily or almost daily 
-Several times a day 
-I'm not sure 

 
Supplementary Table 3: Phenotypes associated with BMI used in the Genetic Weight report 

Phenotype N PheWAS p-value GxE p-value 

Exercise frequency 47194 <1.8e-307 5.25e-38 

Fast food frequency 105597 <1.8e-307 1.45e-33 

Red meat servings per week 301211 <1.8e-307 3.6e-36 

Vegetable servings per week 255524 <1.8e-307 4.15e-20 

Leafy green eating frequency 107696 <1.8e-307 2.98e-24 

Stress level 127957 8.53e-193 5.70e-19 

Average sleep per night 110182 1.22e-129 3.98e-4 

Fish eating frequency 135465 2.75e-193 1.7e-16 

Fruit servings per week 105017 5.99E-229 4.5e-10 

Yogurt eating frequency 115251 2.98E-130 6.5e-5 

Fruit juice drinking frequency 106202 7.52E-129 1.92e-10 

Supplementary Table 3: N, the number of 23andMe research participants of European 
ancestry used to create model. This N is the intersection of participants in the European 
training cohort who also answered a survey question about the phenotype. PheWAS p-value, 
the p-value associated with the null hypothesis that the real beta of the phenotype term in the 
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PheWAS is 0. GxE p-value, the p-value associated with the null hypothesis that the real beta of 
the phenotype:GRS term in the linear regression BMI~phenotype + GRS + phenotype:GRS is 
0. 
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