
 

White Paper 23-14

Admixture Date Estimator

Authors:

Katarzyna Bryc kbryc@23andme.com
Eric Y. Durand
Joanna Mountain

Created: 1 December 2016
Summary:

Admixture date estimator is a 23andMe feature that enables
customers to find out, for each of the ancestries they carry, when they
may have had an ancestor in their genealogy who was likely to be a
non-admixed representative of that population. This document is a
technical description of the statistical methodology supporting this
feature.



1 Admixture date estimation background and overview

An understanding of population history, including population splits and mixture
events, is integral to understanding the patterns of genetic variation and forces
shaping human genomes. Admixture, or the mixture of populations that previ-
ously were long separated, has recently been shown to occur pervasively through-
out human history. Recent literature highlights the many examples that illustrate
the prevalence of admixture events in human history, including: gene flow from
Neandertals (Green et al., 2010), archaic population mixtures in Europe (Lazaridis
et al., 2014), gene flow across Austronesia (Lipson et al., 2014), or modern admix-
ture in the Caribbean (Moreno-Estrada et al., 2013).

Population-based methods for inferring admixture times

With the advances in genome-wide high-density genotype data, population ge-
netics has witnessed an increase in the number of statistical methods for infer-
ring not just population proportions of admixture (Falush et al., 2003; Alexander
et al., 2009), but also the timing of when these population mixture events occurred.
These methods, which estimate the “admixture date” of population mixing, rely
on one of several signals visible through genetic data:

1. The size and number distribution of migrant segments, eg. Pool & Nielsen
(2009); Gravel (2012)

2. The decay in correlations between nearby markers, eg. Loh et al. (2013)

3. The variance in proportions of ancestry among individuals, eg. Goldberg
et al. (2014)

These methods have been shown to perform well in reconstructing the popula-
tion history of admixture events, typically using genotype data from a set of in-
dividuals from a population of interest, and one or more sets of individuals from
reference ancestral proxy populations.

Adaptation of population genetic methods to individual estimates

Here, we wish to learn about the history of a single individual leveraging their
genetic data. We aim to estimate their “admixture” timing, namely, when their
ancestors from divergent populations began to mix. Put another way, estimating
the date of an individual’s admixture is similar to asking how many generations
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ago an individual most recently had an ancestor that was fully from a particular
population. This estimate may be of interest, either as a tool for learning about
one’s genealogy, in figuring out which ancestors a particular ancestry may have
been inherited from, or for piecing together the history of their likely migrations.

In our method, we use the signals of (1.) above. We leverage our existing
Ancestry Composition results, that provide estimates of ancestry along each posi-
tion of the genome from 31 world-wide populations (Durand et al. (2014)). Unlike
many previous methods that use ancestry segments, our method is developed to
provide inference for a single genome.

Challenges to development

By estimating admixture dates for a single individual rather than a population,
fundamentally, the single biggest challenge in implementation is the reduction
in data available to generate the estimate. As with previous population-based
methods, the number of possible population histories is infinite, and therefore,
all previous studies implement some parameterization or reduced set of possible
histories over which to search (for example, a single “pulse” model of admixture,
or a “continuous” model of constant migration).

Likewise, though there are many possible ways that one can inherit ancestry
(from any number of genealogical ancestors going back in time), to reduce our
possible parameter space, we assume a model where exactly one ancestor con-
tributed an ancestry. Though simplistic, this model allows us to provide an esti-
mate using just a single genome, and we make some allowances for violations of
our model assumptions in implementation.

Brief guide to interpretation of results

In the simplest case, when an ancestry is indeed introduced by one ancestor g gen-
erations ago, and is well-captured by a single population ancestry, the admixture
date is designed to capture that date. However, there are several caveats to this
direct interpretation. In many cases, individuals from some world-wide popula-
tion may themselves be highly admixed, obfuscating the time to when this an-
cestry may have first been introduced. The admixture date provided is based on
the ancestry segments estimated by Ancestry Composition, and is, consequently,
dependent on their accuracy and specificity for accurate date estimation. Any
genealogical history or ancestries that are not well captured by Ancestry Com-
position estimates may result in poor admixture date estimation, which typically
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results in older estimated dates of admixture.
Secondly, the admixture date is based on all segments of a particular ancestry.

If multiple genealogical ancestors contributed independently, the admixture date
may reflect these multiple ancestors in a complex way. If many segments, from
independent ancestors, recombine to form longer segments, the estimated admix-
ture date may be shifted towards a more recent date. This is especially likely in
the case when segments cover over 50% of a genome. On the other hand, if many
older genealogical ancestors contribute discrete, shorter segments, the estimated
admixture date may be pushed back, reflecting a weighted average over the mul-
tiple ancestors’ generations.

Lastly, it is important to note that the inheritance of segments in one genome
from a genealogical ancestor is a highly stochastic process, resulting in overlap-
ping inheritance patterns that are not distinguishable the further back in time you
go, even under otherwise ideal conditions. [For a great discussion, see the recent
Coop Lab blog post1]. Thus, some amount of uncertainty is inherent in the data,
so we present admixture date results in bins that allow for some of this inherent
randomness.

A note on translating generations to years Population geneticists have esti-
mated that the average generation time, or the number of years, on average, be-
tween the birth of an individual and their child’s birth, is about 29 to 30 years.
Contrary to popular belief, this estimate seems to be true even going back in time
hundreds and thousands of years. So if we wish to crudely translate between the
admixture date in generations to years, we often multiply by 30. This of course,
represents an average, and may not be accurate for any particular genealogy, and
to translation to absolute dates (e.g. 1790) is dependent on an indvidual’s present
age. (When someone’s great-grandparents lived is quite different whether they
are 9 or 90.) However, this translation from generations to years may be helpful
in providing a timeframe for events (e.g. 10 generations ago is likely after the
Mayflower but before George Washington is born in US history).

2 Method

At each generation, during meiosis, homologous chromosomes recombine, shuf-
fling up the material that gets passed along to offspring. Likewise, the ances-

1http://gcbias.org/2013/11/11/
how-does-your-number-of-genetic-ancestors-grow-back-over-time/
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try of those chromosomes gets shuffled, and “after migrant chromosomes enter
a population, they are progressively sliced into smaller pieces by recombination.
Therefore, the length distribution of ‘migrant tracts’ contain information about
historical patterns of migration,” or, in our case, the time since a genealogical an-
cestor introduced that ancestry (Pool & Nielsen, 2009). Figure 1 illustrates the
recombination process and the breakdown of segments that get passed from one
generation to the next over eight generations.
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Figure 1: Segments from an ancestor traced over eight generations. Simulated
results illustrate that in the first generation, whole chromosomes are inherited,
and over each subsequent generation the segments become shorter and fewer.
Segments for each subsequent generation are shown below the previous painted
segments, and are colored by shade indicating generation.

Some useful definitions:

Ancestry segment a section of the genome, measured in genetic distance, or cen-
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tiMorgans (cM), defined by the start and end of a continuous ancestry as-
signment.

Admixture date shorthand notation for the time when you last had an ancestor
fully from a population.

Method summary

We use forward simulations to generate expected segment distributions, assum-
ing a Poisson model of recombination events and no recombination interference.
We generate summary statistics from the simulations, which we then use to limit
the feasible generation range, based on summary statistics that are more than
twice the simulated statistic.

We then find the maximum likelihood estimate (MLE) using an Exponential
distribution model of segment lengths, and extrapolate a range of admixture dates
from the MLE based on simulated estimate accuracy. The mathematical details of
generating our estimates follow below.

Model assumptions

1. Ancestry Composition proportions and segment lengths capture the true
levels of ancestry from each population.

2. Each ancestry is introduce by a single ancestor g generations ago. Though
obviously not the case for most complex admixture events (or for any ances-
try inherited from both parents), this assumption allows for the simplifica-
tion of statistical calculations.

Technical challenges, which violate model assumptions

• Poor recall for some Ancestry Composition populations or imperfect phas-
ing may lead to subsequent errors in the date estimates. Likewise, ances-
try that is “broadly” assigned rather than population-assigned may simi-
larly impact estimates. Typically this results in an underestimate of ancestry,
which pushes back the admixture date.

• “Choppy” segment data, as a result of uncertain ancestry assigments. When
the assignment score drops below the threshold, a segment may break. When
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a region of the genome is not matched particularly well by a reference pop-
ulation, frequently this results in many such drops in scores, leading to bro-
ken, or choppy, short segments of ancestry. This in turn will lead to an older
admixture date, as the segments appear shorter.

• Violations of the “one genealogical ancestor” assumption. If, instead, mul-
tiple independent ancestors in your genealogy contribute an ancestry, the
segments of the same ancestry may recombine to create longer, not shorter,
segments that suggest a more recent admixture date. It also typically results
in a greater number of segments, invalidating any method that uses count
of segments without accounting for multiple ancestors.

Similarity to inference of relationship from segments shared Identical-By-Descent
(IBD) The size and number distribution of ancestry segments, under the single
ancestor scenario, is akin to identifying kinship via IBD sharing. This problem has
most recently been worked on by Huff et al. (2011) and Hill & White (2013).

3 Algorithm

For each ancestry carried by an individual, we generate a distribution of ancestry
segment genetic lengths, based on “Best Guess” ancestry composition estimates
that use a threshold of 0.

1. Reduce feasible admixture date range using simulated sum-
mary statistics.

Forward recombination simulations generate summary statistics We use for-
ward simulations, based on a Poisson-model of recombination events and genetic
lengths of autosomal chromosomes to estimate summary statistics for segments
inherited from a single ancestor g generations in the past. We generate forward
simulations using an R algorithm, first proposed Luke Jostins 2, to generate 10,000
forward simulations. The statistics we track are:

• Proportion of genome covered by inherited segments

• Number of segments

2 http://www.genetic-inference.co.uk/blog/2009/11/how-many-ancestors-share-our-dna/
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• Number of chromosomes bearing segments

• Length of longest segment

Reduce feasible generation space We reduce the feasible range, by excluding a
generation from the feasible dates, if a summary statistic falls outside the range
of the simulated data for that generation. Since multiple ancestors violates the
simulation model, and increases the amount of ancestry an individual carries, we
only reduce the feasible dates using the lower bound of each metric. Note that
in our simulation, the first admixed generation is deterministic, so we allow for
a factor of two difference from the summary statistic, to relax our algorithm to
allow room for imperfect ancestry assignments, and to conservatively reduce the
feasible dates. Multiple older genealogical ancestors are expected to have lesser
impact on the longest segment, so we exclude a generation from the feasible dates
if the length of the longest segment is greater than twice the largest simulated
length. We allow for twice the length to conservatively reduce the feasible date
space.

2. Estimate the admixture date

Estimate the maximum likelihood estimate (MLE) in feasible range We calcu-
late the likelihood of observing the segment data as a function of the number of
generations since admixture, modeling the lengths of the segments as an expo-
nential, namely

L(g|X) =
∏
xi

g ∗ e(−g∗xi)

Generate admixture date range from MLE As you go further back in time, the
stochasticity of what you inherit from an ancestor increases, making it more and
more difficult to pinpoint the generation that they were present in your genealogy.
For example, you may have inherited a long segment by chance from a distant
ancestor, or gotten very short segments from a recent ancestor. As a result the
MLE is often not the true generation, so we accommodate this randomness by
providing a range of which generation your ancestor may have been present in
your genealogy.
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Table 1: Admixture date estimates of simulated data. Using segment data from
simulations, we tested the ability of the admixture mapping algorithm to estimate
the correct bin of generations over 2,000 simulated individuals for each genera-
tion. On average, across generations, we witness an average of 94.5% accurate
identification.

True generation Accuracy (%)
1 100.0
2 99.6
3 99.0
4 93.0
5 91.1
6 99.7
7 99.8
8 98.1
9 86.0
10 89.5

4 Simulation results

We evaluated our algorithm using segment data created by an independent set of
forward simulations. Using segment data from 1,000 simulated individuals, we
find that the correct bin (containing the true generation time) is estimated 94.5%
of the time. We use the 2.5 and 97.5 quantiles of the distributions of statistics as
our thresholds for reducing the feasible range. A table of accuracy per generation
is shown in Table 1.

5 Frequently Asked Questions

Why can’t we just use the proportion of ancestry for inference? Often, people make
a back-of-the-envelope calculation, where the amount of ancestry you in-
herit is about 1

2g , where g is the number of generations since your ancestor.
This works well generally, and on average, but there are two reasons why we
use a more complex model. First, the amount of ancestry you inherit from
an ancestor is very stochastic, and we need to take this into account. Sec-
ond, and perhaps more importantly, having multiple ancestors that carry
an ancestry will greatly influence the estimates from ancestry proportions,
making an ancestry appear more recent. Using segment lengths allows us to
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better infer the true generation time, even when there are multiple ancestors.

Why isn’t the X chromosome used in calculations? The X chromosome has a par-
ticular inheritance pattern that differs between men and women, which re-
sults in recombination patterns and proportions of ancestry that are quite
complex depending on the male and female line of descent of your ances-
try. Rather than model these inheritance patterns, we simply exclude the
X chromosome for both simulations and likelihood calculations. Hence, any
ancestry that is only found on the X chromosome is excluded from inference.
We aim to improve our estimation method in the future to allow modeling
the X chromosome.
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