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Summary 
Purpose:	This	white	paper	serves	as	a	companion	to	23andMe	customer	reports,	
offering	more	details	and	scientific	support	for	the	reported	findings.	We	hope	that	
the	paper	may	also	serve	the	scientific	community	to	elaborate	molecular	pathways	
and	contribute	to	the	understanding	of	basic	human	biology	and	disease.		
Methods:	Customers	submitted	saliva	for	DNA	extraction	and	testing	using	the	
23andMe	Personal	Genome	Service®	(PGS®).	The	23andMe	PGS®	uses	a	BeadChip	
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array	to	probe	over	half	a	million	genetic	variants	distributed	across	the	entire	
human	genome.	Trait	data	were	gathered	through	questions	presented	via	the	
23andMe	website.	Anonymized	trait	and	genotype	data	were	then	combined	to	
conduct	a	GWAS.	Associations	meeting	the	genome‐wide	significance	criterion	for	
each	trait	(p	<	5x10‐8)	are	incorporated	into	customer	reports.		
Findings:	We	report	the	following	trait	associations:	

 Cilantro	Aversion:	Two	genetic	loci	are	significantly	associated	with	aversion	
to	cilantro.	Both	loci	are	located	in	a	cluster	of	olfactory	receptor	genes	that	
have	been	linked	with	the	ability	to	detect	aldehyde	odorants.		

 Sweet	vs.	Salty/Savory	Taste	Preference:	Two	genetic	loci	that	are	significantly	
associated	with	the	preference	for	sweet‐tasting	foods.	These	loci	are	located	
within	the	FGF21	and	FTO	genes,	both	of	which	are	associated	with	
metabolism	and	body	mass	regulation.	

 Sensitivity	to	the	Sound	of	Chewing	(Misophonia):	One	genetic	locus	that	is	
significantly	associated	with	the	sensitivity	to	chewing	sounds.	This	locus	is	
located	near	the	TENM2	gene	that	plays	a	role	in	brain	development.	

Conclusions:	We	will	continue	to	perform	GWAS	on	a	variety	of	traits	and	use	data	
reported	in	this	white	paper	to	support	customer	reports.	We	will	continue	adding	
new	trait	associations	to	this	white	paper	as	more	23andMe	GWAS	results	become	
available.		
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Introduction 

The	23andMe	Personal	Genome	Service®	(PGS®)	uses	DNA	extracted	from	customer	
saliva	to	give	customers	access	to	their	genetic	information.	Customers	are	invited	
to	answer	questions	about	various	traits	and	health	conditions.	Their	anonymized	
survey	responses	and	genetic	data	are	combined	to	perform	a	genome‐wide	
association	study	(GWAS).	

By	combining	our	large	consented	customer	research	database,	web‐based	surveys,	
and	custom	GWAS	tools,	we	routinely	identify	genetic	associations	for	a	variety	of	
human	traits.	Some	of	these	analyses	have	been	used	to	replicate	associations	
reported	in	the	literature	and	to	publish	novel	associations	in	peer	reviewed	
journals	[1–13].		

This	white	paper	details	genetic	associations	that	we	have	identified	with	the	
participation	of	23andMe	customers.	It	is	intended	to	support	customer	reports	that	
provide	interpretations	of	personal	genetic	results.	We	will	update	this	white	paper	
over	time	as	we	add	more	customer	reports.		

Methods 

Single‐phenotype	GWAS	were	conducted	as	described	previously	[6].	Relevant	
details	and	changes	are	described	briefly	below.	

Study Participants 

Study	participants	were	23andMe	customers	who	had	been	genotyped	as	part	of	the	
23andMe	PGS®,	consented	to	research,	and	voluntarily	responded	to	web‐based	
surveys.	The	study	protocol	and	consent	form	were	approved	by	the	external	
Association	for	the	Accreditation	of	Human	Research	Protection	Programs‐
accredited	Institutional	Review	Board,	Ethical	and	Independent	Review	Services.		
All	study	participants	were	required	to	have	>	97%	European	ancestry,	as	
determined	by	analysis	of	local	ancestry	[14].	The	reference	population	data	for	
ancestry	analysis	were	derived	from	public	datasets	(the	Human	Genome	Diversity	
Project,	HapMap,	and	1000	Genomes)	and	from	23andMe	customers	who	have	
reported	having	four	grandparents	from	the	same	country.	At	present,	the	database	
has	the	highest	power	to	detect	associations	in	cohorts	of	European	ancestry.	
We	also	required	that	participants	were	unrelated	(sharing	a	smaller	percent	of	the	
genome	than	the	minimum	expected	for	first	cousins),	as	determined	by	a	segmental	
identity‐by‐descent	estimation	algorithm	[15].	

Sample collection, DNA extraction, and genotyping 
Participants	provided	their	saliva	using	a	specialized	collection	device,	and	mailed	
their	samples	to	a	CLIA‐certified	laboratory	contracted	by	23andMe.	DNA	extraction	
and	23andMe	BeadChip	genotyping	were	performed	by	the	contracted	laboratory	
[1,6].	All	samples	were	genotyped	on	one	of	four	versions	of	23andMe	BeadChips	
(produced	by	Illumina)	that	probe	over	half	a	million	single	nucleotide	
polymorphisms	(SNPs)	distributed	across	the	entire	human	genome.	
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Trait data collection 
Each	GWAS	presented	in	this	paper	is	based	on	the	response	to	one	or	more	
questions	presented	via	the	23andMe	website.	Each	question	is	designed	to	collect	
data	about	a	specific	trait	or	a	set	of	related	traits.	Questions	are	typically	multiple	
choice.	The	23andMe	self‐report	data	gathered	through	such	questions	is	
statistically	robust	and	replicable,	as	shown	by	a	number	of	collaborator	
publications	[3,6,9,11,16–18].	

GWAS  
Single‐phenotype	GWAS	were	conducted	as	previously	described	[6],	except	that	no	
phasing	or	SNP	imputation	were	done.	Associations	between	genotyped	SNPs	and	
traits	were	estimated	using	logistic	regression	assuming	additive	allelic	effects	for	
binary	traits	(to	calculate	an	odds	ratio	(OR))	and	linear	regression	for	quantitative	
traits	(to	calculate	a	regression	coefficient	β).	The	analysis	was	adjusted	for	age,	sex,	
and	the	top	five	principal	components	to	account	for	population	structure.	P	values	
were	computed	using	a	likelihood	ratio	test.	SNPs	were	excluded	from	the	GWAS	
analysis	if	any	of	the	following	criteria	were	met:	minor	allele	frequency	<	0.1%,	
Hardy‐Weinberg	equilibrium	test	[19]	p	<	10‐20	in	people	of	European	ancestry,	
evidence	of	laboratory	batch	effects,	or	genotype	call	rate	<	95%.	SNPs	were	also	
excluded	if	they	had	large	allele	frequency	discrepancies	compared	with	European	
1000	Genomes	reference	data,	identified	by	computing	a	2x2	table	of	allele	counts	of	
European	1000	Genomes	samples	and	2000	randomly	sampled	23andMe	customers	
with	European	ancestry,	and	identifying	SNPs	with	a	chi	squared	p	<	10‐15.	After	
GWAS	analysis,	p	values	were	adjusted	using	genomic	control	(a	factor	of	1.092	for	
cilantro	preference	data,	1.227	for	sweet	preference	data,	and	1.103	for	misophonia	
data)	to	correct	for	statistical	inflation	[20].	SNPs	with	an	association	p	<	5x10‐8	
were	considered	statistically	significant.	

Trait selection for reporting 
For	customer	reports,	we	gave	higher	priority	to	associations	that	had	larger	effect	
sizes,	identified	novel	phenotype	associations,	or	had	strong	evidence	for	underlying	
biological	mechanisms.		

Data presentation 
Association	p	values	for	all	genotyped	SNPs	across	all	chromosomes	are	illustrated	
in	a	Manhattan	plot.	Compelling	associations	will	have	clusters	of	significantly	
associated	SNPs	at	one	or	more	chromosomal	loci,	with	a	few	SNPs	with	highly	
statistically	significant	p	values	at	each	locus.	Data	quality	was	further	assessed	in	
the	Q‐Q	plot,	which	plots	observed	quantiles	of	GWAS	p	values	against	expected	
quantiles	of	p	values	under	a	null	distribution.	To	identify	index	SNPs,	all	SNPs	with	
association	p	<	10‐5	were	grouped	into	intervals	separated	by	gaps	of	at	least	250kb.	
The	SNP	with	the	lowest	statistically	significant	p	value	in	each	interval	was	
considered	to	be	the	index	SNP	for	that	region,	and	reported	in	Table	1.	SNP	
positions	are	specified	according	to	the	NCBI	Genome	Reference	Consortium	human	
genome	build	37	(GRCh37).	
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Associations identified by GWAS 

Cilantro taste aversion 
The	Coriandrum	sativum	plant	is	commonly	known	as	cilantro	or	coriander.	It	is	
used	as	an	ingredient	in	various	cuisines	around	the	world,	with	historical	
references	even	found	in	ancient	Roman	texts	[21–23].	However,	some	people	
describe	cilantro	taste	as	unpleasant	and	“soapy”,	and	the	prevalence	of	cilantro	
aversion	appears	to	vary	with	ancestry	[24].	The	key	chemical	components	
responsible	for	cilantro	aroma	are	thought	to	be	aldehydes:	unsaturated	aldehydes	
are	described	as	smelling	“fruity”	and	(E)‐2‐alkenals	are	described	as	“soapy”	[25–
27].	These	and	many	other	odorants	are	detected	by	specialized	odorant	receptors,	
products	of	a	family	of	about	400	functional	human	genes	[28].		

Genetic	differences	in	odorant	receptors	have	been	shown	to	affect	how	we	perceive	
tastes	and	smells	[1,29–35].	To	learn	more	about	potential	genetic	associations,	we	
assessed	participants’	perception	of	cilantro	taste	using	a	multiple‐choice	question	
with	3	answer	options	(in	parentheses):	

“Do	you	like	the	taste	of	fresh	(not	dried)	cilantro?”	(Yes/No/I’m	not	sure)	

A	total	of	56,360	participants	(74%)	answered	“Yes”	and	19,731	participants	(26%)	
answered	“No”.	Participants	who	answered	“I’m	not	sure”	were	excluded.	

We	identified	2	genomic	loci	that	passed	criteria	for	genome‐wide	association	
significance	(summarized	in	Figure	1,	detailed	data	in	Table	1).	Index	SNPs	for	these	
loci,	rs2741762	and	rs3930459,	lie	in	non‐coding	regions	within	a	cluster	of	56	
olfactory	receptor	genes	in	chromosomal	region	11p15.4	[36].	The	A	allele	of	
rs2741762	(p	=	2.1x10‐14,	OR	=	1.1)	and	the	C	allele	of	rs3930459	(p	=	4.2x10‐13,	OR	
=	1.1)	are	associated	with	higher	odds	of	disliking	the	taste	of	cilantro.		

We	previously	published	a	GWAS	on	cilantro	preference	using	a	smaller	cohort	of	
23andMe	customers.	In	that	study,	we	identified	a	SNP	(rs72921001)	within	100kb	
of	the	OR6A2	olfactory	receptor	gene	associated	with	perception	of	a	“soapy	taste”	
in	cilantro	[37].	The	data	described	here	represents	a	refinement	of	the	earlier	study	
methodology	with	a	larger	study	cohort.	The	new	GWAS	identified	SNPs	within	
10kb	of	the	OR10A2,	OR10A4,	OR10A6,	and	OR10A3	genes	and	within	100kb	of	the	
OR6A2	gene	(noted	in	the	previous	study).	OR6A2	is	orthologous	to	the	rat	I7	
receptor	gene	[38–42].	The	I7	receptor	detects	a	range	of	n‐aliphatic	aldehyde	
odorants,	including	aldehyde	components	of	cilantro	aroma	[27,36,39].		

Sweet versus salty/savory taste preference 
Human	taste	perception	depends	in	part	on	taste	receptors	in	buds	on	the	tongue	
[43–45].	Sweet	taste	preference	has	approximately	50%	heritability	[46,47],	
meaning	that	genetic	and	non‐genetic	factors	play	an	equal	role.	Studies	in	children	
and	adults	have	shown	that	early	childhood	experiences	and	long‐term	exposures	to	
dietary	sugar	or	salt	in	adulthood	influence	one’s	perception	and	preference	for	
sweeter	or	saltier	foods	[48–50].	Cultural	differences	in	taste	preferences	are	likely	
due	to	differences	in	the	way	sugar	and	salt	are	used	in	each	cultural	group’s	cuisine	
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[51–53].	In	addition,	there	is	evidence	for	interplay	between	taste	preference,	food	
intake,	and	metabolism,	all	of	which	have	genetic	components	[54–58].	

To	learn	more	about	potential	genetic	associations	with	taste	preferences,	we	
assessed	participants’	sweet	versus	salty/savory	food	preference	using	a	multiple‐
choice	question	with	4	answer	options	(in	parentheses):	

“When	you’re	in	the	mood	for	a	snack,	what	kind	of	snack	do	you	usually	reach	for?”	
(Sweet	/	Salty	or	savory	/	Both	/	Neither)	

A	total	of	54,901	participants	(46%)	answered	“Sweet”	and	64,049	participants	
(54%)	answered	“Salty	or	savory”.	Participants	who	answered	“Both”	or	“Neither”	
were	excluded.	

We	identified	29	genomic	loci	that	passed	criteria	for	genome‐wide	association	
significance	(summarized	in	Figure	2).	From	these	we	chose	two	index	SNPs	with	
the	lowest	p	values	to	be	incorporated	into	customer	reports	(detailed	data	in	Table	
1).	The	index	SNP	for	the	first	locus,	rs838133,	lies	within	an	intron	of	the	gene	
FGF21	in	chromosomal	region	19q13.33.	The	index	SNP	for	the	second	locus,	
rs1421085,	lies	within	an	intron	of	the	gene	FTO	in	chromosomal	region	16q12.2.	
The	A	allele	of	rs838133	(p	=	1.9x10‐49,	OR	=	1.1)	and	the	C	allele	of	rs1421085	(p	=	
3.6x10‐23,	OR	=	1.1)	are	associated	with	higher	odds	of	preferring	sweet	tasting	
foods.	 

The	FGF21	gene	encodes	a	hormone	that	regulates	glucose	and	lipid	metabolism.	
[59–62].	In	obese	individuals,	blood	levels	of	FGF21	are	elevated	and	are	predictive	
of	developing	diabetes	[63,64].	Because	of	its	function	as	a	metabolism	regulator,	
FGF21	has	been	proposed	as	a	therapeutic	target	for	metabolic	diseases	[65,66].	

The	FTO	locus	we	report	was	previously	found	to	be	associated	with	obesity	[67,68].	
This	locus	contains	long‐range	elements	that	regulate	the	expression	of	the	
neighboring	homeobox	gene	IRX3	[69,70].	In	turn,	IRX3	is	thought	to	play	an	
important	role	in	the	regulation	of	body	mass	and	metabolism	[69].		

Our	findings	are	consistent	with	those	of	Chu	et	al.,	who	identified	an	association	
between	the	same	FTO	and	FGF21	loci	(including	SNP	rs838133)	and	dietary	
macronutrient	intake	[71].	
	

Sensitivity to the sound of chewing 
“Misophonia”	is	a	very	recently	coined	term	to	describe	a	dislike	of	specific	sounds	
[72].	The	offending	sounds	include	the	sound	of	other	people	chewing	or	breathing	
(most	common),	finger	or	foot	tapping,	and	footsteps	[73].	Misophonia	is	different	
from	other	types	of	sound	sensitivity	(such	as	hypersensitivity	to	loud	sounds)	
because	it	has	a	strong	emotional	component	and	the	specificity	for	certain	human	
sounds	[74].	Two	studies	have	linked	misophonia	with	a	higher	frequency	of	
obsessive	compulsive	personality	disorder	[73,75].	However,	little	research	has	
been	published	on	misophonia,	and	the	underlying	biology	is	not	known.		
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To	learn	more	about	potential	genetic	associations	with	misophonia,	we	focused	on	
the	most	common	offensive	stimulus:	the	sound	of	chewing.	We	assessed	
participants’	aversion	to	the	sound	of	chewing	using	a	multiple‐choice	question	with	
3	answer	options	(in	parentheses):	

“Does	the	sound	of	other	people	chewing	fill	you	with	rage?”	(Yes/No/Not	Sure)	

A	total	of	17,606	participants	(22%)	answered	“Yes”	and	63,001	participants	(78%)	
answered	“No”.	Participants	who	answered	“Not	Sure”	were	excluded.	

We	identified	one	genomic	locus	that	passed	criteria	for	genome‐wide	association	
significance	(summarized	in	Figure	3,	detailed	data	in	Table	1).	The	index	SNP	for	
the	significant	locus,	rs2937573,	lies	near	the	gene	TENM2	in	chromosomal	region	
5q34.	The	G	allele	of	rs2937573	(p	=	2.0x10‐39,	OR	=	1.2)	is	associated	with	higher	
odds	of	being	sensitive	to	the	sound	of	chewing.	 

The	TENM2	gene	encodes	a	protein	that	is	involved	in	the	formation	of	neural	
connections	during	brain	development	[76–78].	One	researcher	has	proposed	that	
misophonia	“results	from	enhanced	functional	connections	between	the	auditory	
and	the	limbic	and	autonomic	nervous	systems”	[79].	The	involvement	of	TENM2	
supports	this	theory;	however,	further	investigation	is	needed	to	understand	the	
biology	of	misophonia.			
	

Figure	1.	Cilantro	aversion	GWAS	results	

	
Manhattan	plot	of	GWAS	results	for	the	cilantro	taste	trait.	Log‐scaled	p	values	(y‐axis)	are	plotted	
against	genomic	position	on	chromosomes	1‐22	and	X	(x‐axis).	Red	squares	represent	SNPs	with	p	<	
5x10‐8	(‐log	p	of	~7.3),	green	and	blue	squares	represent	SNPs	with	p	>	5x10‐8.	The	horizontal	grey	
line	represents	the	p	=	5x10‐8	cut‐off.	Labels	next	to	the	most	significant	index	SNP	locations	show	
the	names	of	the	nearest	genes.	
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Figure	2.	Sweet	vs.	salty	taste	preference	GWAS	results	

	
Manhattan	plot	of	GWAS	results	for	the	sweet	taste	preference	trait.	(See	legend	for	Figure	1.)	
	

Figure	3.	Sensitivity	to	Chewing	Sounds	GWAS	results	

	
Manhattan	plot	of	GWAS	results	for	the	chewing	sound	sensitivity	trait.	(See	legend	for	Figure	1.)	
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Table	1.	Significant	Associations	Reported	to	Customers	

Trait	 SNP	 Region Position Alleles	
(effect/no	
effect)	

EAF OR
(95%	CI)	

p value Gene	context

Cilantro	
aversion		

rs2741762	 11p15.4
	

6892866
	

A/G 0.62 1.102
(1.075	‐	1.130)	

2.1x10‐14	
	

OR10A2[]‐OR10A4

rs3930459	 11p15.4
	

7953958
	

C/T 0.41 1.095
(1.069	‐	1.122)	

4.2x10‐13	
	

OR10A6‐[]‐OR10A3

Sweet	
preference	

rs838133		 19q13.33 49259529
	

A/G 0.44 1.147
(1.136	–	1.157)	

1.9x10‐49 [FGF21]

rs1421085	 16q12.2 53800954
	

C/T 0.41 1.096
(1.076	–	1.117)	

3.6x10‐23 [FTO]

Sensitivity	
to	chewing	
sounds		

rs2937573		 5q34 166471198
	

G/A 0.43 1.189
(1.158	–	1.220)	

2.0x10‐39 []‐‐‐TENM2

Index	SNPs	for	regions	with	association	p	<	5x10‐8	are	reported.	Region	–	cytogenetic	band	position;	Position	–	SNP	position	according	to	the	NCBI	
Genome	Reference	Consortium	human	genome	build	37	(GRCh37);	Alleles	–	effect/no	effect	on	genomic	reference	strand;	EAF	–	effect	allele	frequency	
across	all	study	participants;	OR	–	odds	ratio	for	the	high‐risk	allele;	CI	–	95%	confidence	interval;	Gene	context	–	gene(s)	spanning	or	flanking	(<	1Mb	
away	from)	the	index	SNP:	brackets	indicate	the	position	of	the	SNP,	and	dashes	indicate	distance	to	a	flanking	gene	(‐		>1	kb;	‐‐		>10	kb;	‐‐‐	>100	kb).	

	

	
Table	2.	Demographic	characteristics	of	analyzed	data	

	 	 Sex	(%) Age	distribution	(%)
	 	 Males	 Females ≤	30 >	30	and	≤	45 >	45 and	≤	60 >	60

Cilantro	
aversion		

cases	 8309	(42.1%) 11422	(57.9%) 2158 (10.9%) 4645	(23.5%) 5273 (26.7%) 7655 (38.8%)
controls	 26121	(46.3%) 30239	(53.7%) 5983 (10.6%) 16325	(29.0%) 16771 (29.8%) 17281 (30.7%)

Sweet	
preference	

cases	 26420	(48.1%) 28481	(51.9%) 8459 (15.4%) 17181	(31.3%) 14677 (26.7%) 14584 (26.6%)
controls	 35108	(54.8%) 28941	(45.2%) 10277 (16.0%) 21054	(32.9%) 17299 (27.0%) 15419 (24.1%)

Sensitivity	
to	chewing	
sounds	

cases	 7222	(41.0%)	 10384	(59.0%)	 3321	(18.9%)	 6415	(36.4%)	 4666	(26.5%)	 3204	(18.2%)	

controls	 31009	(49.2%)	 31992	(50.8%)	 5995	(9.5%)	 13953	(22.1%)	 18407	(29.2%)	 24646	(39.1%)	

Numbers	(and	percentages)	of	individuals	in	the	analyzed	data	sets.	
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Definitions 
Allele	–	A	version	of	a	DNA	sequence	at	a	specific	genomic	location	(either	coding	or	
non‐coding).	An	individual’s	genotype	is	his/her	set	of	alleles	at	a	specific	genomic	
location.		
Ancestry	–	Characterization	of	an	individual	as	belonging	to	a	group	with	a	specific	
historical	geographic	location	and	ethnic	identity.	Determined	computationally	by	
comparing	the	individual’s	genome	to	reference	datasets	for	various	ancestry	
groups.	
Effect	Allele	Frequency	(EAF)	–	The	frequency	in	a	population	of	the	allele	
associated	with	higher	odds	of	having	a	specific	trait.	
Genome	Wide	Association	Study	(GWAS)	–	A	study	that	uses	an	array	of	SNPs	that	
span	the	genome	to	identify	loci	linked	with	a	particular	trait.	
Hardy	Weinberg	Equilibrium	(HWE)	–	An	idealized	state	where	the	allele	
frequencies	for	a	specific	gene	in	a	population	are	constant	from	generation	to	
generation.	HWE	may	be	disturbed	by	natural	selection,	genetic	drift,	mutation,	and	
other	factors	that	shift	allele	frequencies.	
Intron	–	A	region	of	DNA	within	a	gene	that	is	normally	removed	(spliced)	after	
transcription	and	before	translation	to	a	protein.	
Linkage	Disequilibrium	(LD)	–	A	non‐random	association	between	alleles	at	
different	locations	in	the	genome	indicating	shared	ancestral	origins	and	a	higher	
likelihood	of	being	inherited	together	after	recombination.		
Odds	Ratio	(OR)	–	A	ratio	of	the	odds	of	having	a	trait	given	one	SNP	genotype	to	
the	odds	of	having	the	same	trait	given	another	SNP	genotype,	equivalent	to	the	
effect	size	of	a	genetic	association	for	a	binary	trait.		
Quantile‐Quantile	(Q‐Q)	Plot	–	A	graphical	representation	of	the	quantiles	of	one	
data	set	plotted	against	the	quantiles	of	another	(reference)	data	set.	In	this	white	
paper	the	Q‐Q	plot	is	used	to	evaluate	whether	an	experimental	data	distribution	is	
significantly	different	from	a	theoretical	null	(no	SNP‐trait	association)	distribution.	
Regression	Coefficient	(β)	–	A	measure	of	the	strength	of	the	linear	relationship	
between	a	SNP	allele	and	a	trait,	used	to	estimate	the	effect	size	of	a	genetic	
association.		
Single	Nucleotide	Polymorphism	(SNP)	–	A	single‐nucleotide	variation	at	a	
specific	location	in	DNA	sequence	that	may	be	used	as	a	marker	for	a	specific	human	
trait	or	traits.	
Trait	–	An	easily	observable	characteristic	that	can	be	narrowly	defined	and	
identified	in	multiple	individuals.	In	this	white	paper	“trait”	is	identical	to	
“phenotype”.	
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